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The paper deals with a system of equations of a three-dimensional boundary layer 

(see e. g. tll)with the conditions of suction or adhesion prevailing at the surface 
of the body. It is shown that for the negative values of the longitudinal and 
transverse components of the pressure gradient and the corresponding boundary 
conditions, the longitudinal and transverse components of the velocity vector 

are positive not only near the body, but also throughout the thickness of the 

boundary layer. This makes possible the estimation of the upper limit of the 
velocity components in question in relation to the boundary conditions, and 
to establish the behavior of the projections of the streamlines on the surface 
of the body. The latter is of interest in connection with the domains of in- 

fluence and domains of dependence in the three-dimensional boundary layer 

[2-51. 

Let G c R4(z, y, z, t) he a region defined by the conditions 0 <E<X, 
O<Y<~, O<z<Z,O<t<T. We consider in G a system of equati6ns with 

the boundary conditions 
vuuy - uux - vuu - wur - ut = p*/p ( 1) 

vww - “lu, - vwv - ww, - tut = p&l 

112 + f.$ + wz = 0 

u=w=o 

u = U, w I 

P = v (2, 2, t) < 0, y=o 

W on tic: f-/ [(I = 0) u {z = 0) u {t = 0) u jy = yf] 

Moreoverwehave U>O and W>O when y>O,and aU/ay>O,aW/ 

6’y> 0 when y = 0. The functions px / p and pz / p are assumed to be known 

and negative. 
T h e o r e m 1. Let the boundary value problem (1) have a solution u, D, v E. 

C?(Z). Then u > 0 and u & 0 everywhere in ?$ and the equalities u = 0 and 

w = 0 are attained only,when y = 0. 
Proof. Put s @) =: g n @ = a), 0 < D < x. From the boundary conditions 

and the continuity of the functions & m and their first derivatives it follows that a 

number E > 0 exists such that when y > 0, then rt > (J and w > 0 for all 
c E [o; a), s E 10; a), t Ed [o; a), g E (Y - e; Yl. Let A = sup 111 of the numb- 

ers a’r such that u > 0 when y > 0 on all S (a), a E IO; al). Clearly. 0 < A 

<xx. If A < X, then a sequence a, - A, an > A exists such that at least 

one point P, E s (a,) l~ {y > O} can be found for which u (P,) = 0. Choosing for 

convenience a subsequence rli;, we can assume without restricting the generality, 

that p;, + p E ,$(A), and in this case we also have, by virtue of the continuity, 
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u (P) = 0. If P(X) = A, p(u), p(z), p(t) are coordinates of the point P, 

then in view of the above arguments only the following cases are possible: 
1) 0 < PtuJ < I' - e, e < PC') < 2, E < Pcf) < T. Then, since u>O in 

S (A,, uyy (P) > 0, uy(P) = u,(P) = 0, W(P),< 0 and the first equation of the 
system (1) cannot hold at the point P . 

2) P(U) = 0, E & PC') < 2, E < P(t) < T. In this case w (P) = 0, uv (P) > 0, 
ut (P) < 0 and the first equation of the system (1) yields y+#‘) =pr / p -I- w(P) + 
V(P)u,(P) < 0. Now if u,(P) = 0, then u < 0 on the interval z = A, 0 < y 
< y,, c = PtzJ, t = Pet) where ~0 is sufficiently small, and this contradicts the 

non-negativity of 11 on S (A ). If t”!,(P) > 0, then by virtue of the continuity, % 
> 0 also on the set {A - 15 < z < A i- 6, !/ = 0, PC') - 6 < z < PC') + 6, P@) 

--t~<t<P(~)+-6} fl6 forsome 8>0. From this it follows that u > 0 on 

the set A’ = {A - 6 < I < A + 6, 0 < y < yr, PC') - 6 < z < PC') + d, Pet) - 
6 < t< PC*) + 6) 0 E for some yr > 0. But at sufficiently large values of n all 

points Pn. fall within the set N, and this again leads to a contradiction. 

3) 0 <P@) <Y - E, P(*) = 2, e< Pcf) < T. ThenuvV(P) > 0, uV(P) = 0, 
uz (P) < 0, q(P) f 0 and we must assume, in order to avoid the contradiction wit11 

the first equation of the system (l), that @P) < 0 and w (J’) < 0. Let B = SUP h, 
of the numbers b, such that w > 0 when y > 0 for all S (b), b E 10; b,), and 
let Qn 4 Q E s(B) be a sequence of points defined for w just as it was done for 

the function u. Putting Q@) = 0 leads to a contradiction as in Case 2. If, on 

the other hand, 0 < Q(v) .< Y - E, E < Q(‘) < 2. E < Qtt) < T, then 1~’ (Q) = 0, 

wvlJ(Q) :2 0, wII(Q) =O. W%(Q) < 0, wt(Q) < 0, and since I3 < A, we have u (Q) 
> 0, which contradicts the second equation of (1) at the point 0. 

Thus A = X and similarly B = X. Therefore u > 0, w > 0 everywhere in 

G and the equality u = 0 for Y > 0 can occur only at some point M such that 
M(Xj = x. But then u,(M\<O, u,(M) = 0, u,(M) GO, ut (W < 0, WV(M) > 0 

and we again reach a contradiction with the system (1). Simlilarly we show that 
111 > 0 when y > 0, and this completes the proof of the theorem. 

Lemma. If u, v, w is a solution of class Cs (??) of the boundary value prob- 
lem (l), then any function ‘p E Cs (@ for which 

L (cp) = y’pyy - Wx - L’Vb, - w’pz - qQ < 0 

will not reach its minimum, neither inside G , nor at the part 

8G n [1x = x1 u (2 = 2) u {t = q1 n (0 < y < E’) 

of the boundary. Indeed, if cp attains its minimum as some point M within the re- 
gion G or on the indicated part of the boundary, then %/(W z 0. %W) d 0, 
cpv(M) = 0, cp,(M) f 0, cpt(M) < 0 and we arrive at a contradiction with tne inequal- 
ity L (cp) < 0 which proves the lemma. 

T h e o r e m 2. Let u, w be a solution of class Ca@) of the boundary value 
problem (1). Then 

ofudmaXU+tmaX(-p,./Q) (2) 

o<WdmaXW+tIIIaX(-pp,/Q) (3) 

Proof. Consider the function ‘p = max U + [max (--px / Q) + e]t - u 

for an arbitrary e > 0 . On one hand we have 
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L (cp) = -maxt-p,/p)--~--pPr /p<O, 

i.e. p, satisfies the conditions of the lemma; on the other hand, we have rp >, 0 at 
the part of the boundary at which the function ‘p should attain its minimum, There- 
fore 4, > 0 everywhere in ?? and this proves (21, provided that we make subsequen- 
tly e tend to zero. The inequality (3) is proved in the same manner. 

T h e o r e m 3. Let u, w be a soiution of class Ca (@) of the boundary value 

problem (1). Then we have 

min 
t 

w PX inf 7; minp 
?i>o z > 

<+<max 
( 

sup F; maxs 
00 P, 1 

everywhere in G. 
Proof. Letusset of-mar(sup wl u; maxPz!pXji-e where e>O. 

Then for the function q =: au - w %?have I@) = ap,/ p - Pr f p < 0, i. e. gp sat- 
isfies the conditions of the lemma. On the other hand, v >, 0 everywhere where 9, 
can attain its minimum value. It follows that cp Z 0 in the whole region G, and 

the right inequality is proved if we make .a tend to zero. We prove the left inequal- 
ity in the same manner using the function 

q=w - (min {inf W / U; min pz / Pr) - E) 2b 
Ii>0 

We note that Theorems l- 3 also hold when Y = 00, provided that n - l,’ 

and w + W as y - 00 uniformly in x, z and t- 
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